Package: randomPlantedForest 0.2.1.9000
randomPlantedForest: Random Planted Forest: A Directly Interpretable Tree Ensemble
An implementation of the Random Planted Forest algorithm for directly interpretable tree ensembles based on a functional ANOVA decomposition.
Authors:
randomPlantedForest_0.2.1.9000.tar.gz
randomPlantedForest_0.2.1.9000.zip(r-4.5)randomPlantedForest_0.2.1.9000.zip(r-4.4)randomPlantedForest_0.2.1.9000.zip(r-4.3)
randomPlantedForest_0.2.1.9000.tgz(r-4.4-x86_64)randomPlantedForest_0.2.1.9000.tgz(r-4.4-arm64)randomPlantedForest_0.2.1.9000.tgz(r-4.3-x86_64)randomPlantedForest_0.2.1.9000.tgz(r-4.3-arm64)
randomPlantedForest_0.2.1.9000.tar.gz(r-4.5-noble)randomPlantedForest_0.2.1.9000.tar.gz(r-4.4-noble)
randomPlantedForest_0.2.1.9000.tgz(r-4.4-emscripten)randomPlantedForest_0.2.1.9000.tgz(r-4.3-emscripten)
randomPlantedForest.pdf |randomPlantedForest.html✨
randomPlantedForest/json (API)
NEWS
# Install 'randomPlantedForest' in R: |
install.packages('randomPlantedForest', repos = c('https://plantedml.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/plantedml/randomplantedforest/issues
Pkgdown site:https://plantedml.com
intelligibilityinterpretable-machine-learninginterpretable-mlmachine-learningmlrandom-forestcpp
Last updated 2 months agofrom:41fe7eef99. Checks:6 OK, 3 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 03 2025 |
R-4.5-win-x86_64 | OK | Jan 03 2025 |
R-4.5-linux-x86_64 | OK | Jan 03 2025 |
R-4.4-win-x86_64 | NOTE | Jan 03 2025 |
R-4.4-mac-x86_64 | NOTE | Jan 03 2025 |
R-4.4-mac-aarch64 | NOTE | Jan 03 2025 |
R-4.3-win-x86_64 | OK | Jan 03 2025 |
R-4.3-mac-x86_64 | OK | Jan 03 2025 |
R-4.3-mac-aarch64 | OK | Jan 03 2025 |
Exports:is_purifiedpredict_componentspurifyrpf
Dependencies:backportscheckmateclidata.tablefansigluehardhatlifecyclemagrittrpillarpkgconfigRcpprlangtibbleutf8vctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Extract predicted components from a Random Planted Forest | predict_components |
Random Planted Forest Predictions | predict.rpf |
Print an rpf fit | print.rpf |
Compact printing of forest structures | print.rpf_forest str.rpf_forest |
Purify a Random Planted Forest | is_purified purify purify.default purify.rpf |
Random Planted Forest | rpf rpf.data.frame rpf.formula rpf.matrix rpf.recipe |